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Abstract 

Short-term high-resolution precipitation forecasting has important implications for 

navigation, flood forecasting, and other hydrological and meteorological concerns. This 

article introduces a pixel-based algorithm for Short-term Quantitative Precipitation 

Forecasting (SQPF) using radar-based rainfall data. The proposed algorithm called Pixel- 

Based Nowcasting (PBN) tracks severe storms with a hierarchical mesh-tracking 

algorithm to capture storm advection in space and time at high resolution from radar 

imagers. The extracted advection field is then extended to nowcast the rainfall field in the 

next 3 hr based on a pixel-based Lagrangian dynamic model. The proposed algorithm is 

compared with two other nowcasting algorithms (WCN: Watershed-Clustering 

Nowcasting and PER: PERsistency) for ten thunderstorm events over the conterminous 

United States. Object-based verification metric and traditional statistics have been used to 

evaluate the performance of the proposed algorithm. It is shown that the proposed 

algorithm is superior over comparison algorithms and is effective in tracking and 

predicting severe storm events for the next few hours.  

 

Keywords: Quantitative Precipitation Forecasting, Nowcasting, Tracking, 

Extrapolation, Severe Rainfall Prediction 
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1. Introduction and literature review 

Nowcasting is referred as forecasting the future state of the atmosphere within a very 

short time (e.g., 0~3 hr) at a given location. For such short forecast lead times, an 

effective estimation and extrapolation of existing storms from the current observations 

(radar and satellite images) is critical (Golding, 1998).   

Two primary approaches are used frequently for storm nowcasting depending on the 

length of prediction and the forecast skill. These approaches are: (1) the application of 

storm-scale Numerical Weather Prediction (NWP) models which explicitly model the 

initiation, growth, and dissipation of storms based on the physical modeling of the related 

atmospheric processes, and (2) “data-driven” extrapolation-based approaches which are 

storm-tracking and advection-based techniques, with an attempt to predict the evolution 

of the observed storms (Li et al., 1995; Golding, 1998; Ganguly and Bras, 2003; Bowler 

et al., 2004; Wilson, 2004; Vila et al., 2008; Liang et al., 2010; Liguori et al., 2012; 

Sokol and Pesice, 2012; Zahraei et al., 2011a; Zahraei et al., 2011b). Considering the 

relationship between the length of forecast and specific storm characteristics, such as 

temporal and spatial scale, both of these methods may be applicable and complementary 

(Ganguly and Bras, 2003). 

As shown in Figure 1, due to the chaotic characteristic of atmospheric systems, there 

is always a decaying trend in prediction skill. The relative information content from 

extrapolation/advection-based methods is best immediately after the storm is observed 

(within the first 2-3 hr); the relative information content then decreases linearly with time 

(Austin et al., 1987; Golding, 1998; Lin et al., 2005). For storm-scale prediction, the 

shorter terms are most likely to be forecasted using extrapolated observations, while the 
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relatively longer-term forecasts (e.g., > 3 hr) will likely need to incorporate more 

dynamics contained in storm-scale NWP models (Ganguly and Bras, 2003). 

This study introduces a newly developed algorithm called the Pixel-Based 

Nowcasting (PBN) algorithm. The PBN technique is being developed to improve short- 

(or very short) term predictability of severe storms using a high-resolution radar-based 

rainfall product (Q2).  

The following is a brief literature review related to both the NWP and extrapolation-

based approaches for Short-term Quantitative Precipitation Forecasting (SQPF) or 

nowcasting. Then, it will be pursued by methodology, case studies and data, verification 

and results, and conclusion. 

 

1.1 SQPF and NWP models:  

During recent years, several NWP models have been used in the United States to 

make forecasts for short and long periods of time (Wilson et al., 2004). These models 

have been adapted to predict longer-term atmospheric phenomena with typically coarse 

spatial and temporal resolutions. As presented in Golding (1998), the NWP model 

forecasts are relatively sensitive to the initial condition, resolution, and assimilation 

algorithms, and their capability may not be optimized for very short-term predictions 

(Figure 1). Recently, by using a new generation of sensor networks, several different 

observations have become available in the United States, with sampling frequencies of 1 

hr or less. Thus, the application of high-frequency updating of short-term numerical 

predictions is facilitated. As a result of the more recent observations, more accurate 

forecasts are expected (Benjamin et al., 2004). 
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The first hourly updated, 3-km storm-resolving model, the High-Resolution Rapid 

Refresh (HRRR) model, was employed recently at the National Oceanic and Atmospheric 

Administration NOAA/ESRL/GSD. The HRRR model is nested within the Rapid Update 

Cycle (RUC) and Rapid Refresh (RR). The ability of HRRR in assimilating radar-

reflectivity data in the 13-km RUC and upcoming 13-km RR with a version of the 

Weather Research and Forecasting (WRF) model is considered a significant improvement 

(Benjamin et al., 2009). Due to its ability to simulate atmospheric physical processes, 

including convective activities initiation, the HRRR model has found a broad range of 

applications, particularly for navigation purposes (Wolfson et al., 2008). 

 

Although there have been improvements in the capabilities of NWP models, 

especially in terms of their contribution in detection of storm-initiation dissipation 

activities, NWP models still have some limitations for very short-term prediction of 

smaller-scale storms.  For example, Lakshmanan (2009) introduced the position error as a 

major issue regarding the application of nowcasting methods for the prediction of severe 

thunderstorms. Therefore, considering that the current research concentrates on short-

term predictions (0-3 hrs), as presented in Figure 1, it is timely to introduce simpler 

alternative algorithms. As opposed to NWP models, they require much less input data, 

less computational requirements (cost and time), provide the flexibility of being 

applicable at the global scale with ever-increasing availability of remotely sensed data, 

and are more or less as accurate as NWP models. 
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1.2 SQPF with extrapolation-based models: 

Some studies have shown that the extrapolation-based algorithms are reasonable 

nowcasting methods for precipitation (Dixon and Wiener, 1993; Johnson et al., 1998; 

Germann and Zawadzki, 2002, 2004; Germann et al., 2006; Mueller et al., 2003). 

Precipitation is an important variable for flash-flood forecasting; reliable nowcasting is in 

high demand with required temporal and spatial resolution of a few minutes and a few 

hundred meters (Vasiloff et al., 2007; Vieux and Vieux, 2005). Hence, extrapolation-

based nowcasting algorithms using existing remote-sensing information have been used 

extensively, especially within the first few hours of the occurrence of storm events 

(Grecu and Krajewski, 2000; Montanari et al. 2006).  

A general representation of the extrapolation-based nowcasting system is described 

below (Grecu and Krajewski, 2000; Laroche and Zawadzki, 1995; Montanari et al., 

2006): 
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(1)             

in which, pt(x,y) is the precipitation depth at each location (e.g., the pixel located on (x,y) 

at time t), Ux (velocity in the x direction; West-East), and Vy (velocity in the y direction; 

North-South) are advection-field components of the rainfall field for storms located on 

(x,y). g is a function of parameters a that needs to be estimated using(Pt,…,Pt-l) rainfall 

rate in current and previous time steps, and w is the noise element. According to Eq. (1), 

the rainfall-depth variation at time t and at (x,y), ∆pt(x,y) would be a function of two 
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parallel processes. The second and third terms on the left-hand side of Eq. (1) introduce a 

Eulerian process, in which the storm is moving in the Eulerian reference frame. The 

storm variation is a result of the advection vectors of Ux, Vy. In addition, the function g 

represents a dynamical Lagrangian process in which a future storm’s intensity is a result 

of its historical changes in a Lagrangian reference frame that travels along the storm path 

(Grecu and Krajewski, 2000). Considering a storm in the smallest possible unit (pixels), 

Eq. (1) presents a pixel-based definition of nowcasting in which the storm moves forward 

pixel-by-pixel.  

As suggested by Austin and Bellon (1974), a nowcasting algorithm should consist of 

a tracking and forecasting process. Several attempts to improve the trackability of the 

storms’ movements have been made. Some investigators have proposed approaches to 

track and forecast thunderstorms with the highest possible resolution (Eq. (1): spatial 

resolution in the scale of each pixel) (Tuttle and Foote, 1990; Grecu and Krajewski, 2000; 

Germann and Zawadzki, 2002; Ridal et al., 2010). Two particular classes of algorithms 

have been used to estimate storm velocity from two consecutive images. The first 

approach is based on the maximum correlation between two successive images (Smythe 

and Zrnic, 1983; Tuttle and Foote, 1990; Laroche and Zawadzki, 1995). The second 

approach assumes that changes in the first image (e.g., advection) result in the second 

image. The advection field is then estimated by minimizing the difference between the 

reshaped first image and the second image (Germann and Zawadzki, 2002, 2004; Turner 

et al. 2004). For example, Germann and Zawadzki (2002) estimated the echo motion field 

by utilizing the Variational Echo Tracking (VET) algorithm to retrieve 2-D advection-

field components including: Ux (velocity component in the x direction), Vy (velocity 
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component in the y direction), by minimizing a large-scale nonlinear cost function. 

Regardless of the complexity of solving a large-scale nonlinear optimization problem, the 

VET algorithm is sensitive to the first guess (Laroche and Zawadzki, 1995). 

 

1.3 Necessity for new tracking and nowcasting algorithms: 

Many radar-based wind-retrieval algorithms employ template-matching algorithms to 

estimate inter-image displacement (Leese et al., 1971). These methods compare the 

patterns of pixels within a small window in a given image with similar patterns at 

potential corresponding locations in the subsequent image. A similarity measure, such as 

maximum correlation, can identify the most matching locations. However, the correlation 

surfaces associated with the search algorithms frequently display diffuse or multiple 

optima. Similarly, the simple template-matching algorithm operates based on window 

translations which are relatively incapable of accommodating feature rotation and 

deformation (Bellerby, 2006). 

To overcome the aforementioned problem of simple template-matching algorithm, 

several techniques impose smoothness criteria on the displacement field. It is also 

suggested to adopt a hierarchical representation of the displacement field in which each 

feature motion is considered as the sum of smoothly varying trends identified at relatively 

coarse spatial resolution and smaller magnitude local correction derived at progressively 

higher spatial scales (Bergen et al., 1992). It is also possible to couple hierarchical-

tracking approaches with mesh-based models of image deformation. Mesh models 

provide a piecewise representation of the displacement field in which displacement is 

defined over the nodes of a mesh and interpolated within each mesh element (Wang and 
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Lee, 1996). In this article, a newly developed hierarchical storm-advection algorithm 

based on the topological transformation of a quadrilateral mesh is implemented (Bellerby, 

2006). This algorithm is a computationally efficient technique to capture movements and 

rotations of storms. The algorithm has shown promising performance in tracking storms 

(Behrangi et al., 2010).  

The proposed tracking algorithm, along with the projection scheme, is able to track 

the advection and rotation of small scale, fast-moving thunderstorms that could not be 

necessarily predictable using the current algorithms. The proposed PBN predicts both 

storm advection and its dynamical features (e.g., rainfall-intensity changes). The PBN 

algorithm could track and forecast relatively small-scale severe storms that have 

significant importance regarding their associated catastrophic phenomena, such as 

tornados and severe rainfall.  

The newly proposed PBN technique will be compared to two existing algorithms 

including: WCN and PER. One current state-of-the-art of nowcasting is called 

Watershed-Clustering Nowcasting (WCN) in the current research. The WCN, developed 

by the National Severe Storm Laboratory (NSSL) and the University of Oklahoma, is part 

of the Warning Decision Support System-Integrated Information (WDSS-II) system 

(Lakshmanan, 2009). The algorithm is computationally efficient and effective for the 

identification and tracking of severe thunderstorms. The algorithm has a few consecutive 

steps, including smoothing, quantization, transformation, immersion simulation, and 

affecting the scale. The algorithm proposes a watershed transform model where the storm 

objects are defined as salient if they can pass size criteria instead of considering 
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watershed depth. Therefore, it is not necessary to define different thresholds and 

watershed depth criteria. The algorithm uses the cost-function optimization problem to 

track storm objects (Dixon and Wiener, 1993). PER is the PERsistency algorithm which 

assumes there is a frozen situation that storm does not change. 

The main contribution of this paper can be summarized as follows: (1) implementing 

a newly developed pixel-based tracking algorithm to track each rainy pixel advection, 

which improves the predictability of smaller-scale severe rainfall events.; (2) extract 

storm-advection field and dynamic-evolution features based on Step (1); (3) storm 

projection (extrapolation) including both storm advection and evolution (e.g., rainfall-

intensity change); and (4) comparison with other techniques. Being simple and not a 

computationally time-consuming algorithm, the PBN is offered to provide a relatively 

accurate initial forecast for severe events in short-term lead time.  

 

2. Methodology 

2.1 Pixel-Based Nowcasting (PBN) algorithm: 

Thunderstorms usually have relatively small-scale high-rainfall cores that should be 

predicted accurately. Regardless of their sizes and relatively short lifetimes, the 

advection-based nowcasting algorithm should enhance the prediction of the storms’ 

future positions. Therefore, the PBN algorithm forecasts storms associated with intensive 

rainfall more accurately using a pixel-based storm-tracking process to catch each storm 

dynamic advection process using radar imagery, and then an extrapolation/nowcasting 

step that provides the dynamic evolution of pixel position and precipitation intensity from 
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the current to the future time steps. The PBN uses the high-resolution pixel-based 

tracking algorithm adapted to track rainy pixels (pixels more than 0.4 mm/hr). The 

tracking algorithm finds the corresponding location of each rainy pixel in the previous 

time step(s). After tracking each rainy pixel in time, the corresponding advection velocity 

and evolution trend (rainfall-intensity change) for each pixel will be known. The 

extracted features can be used to project the storm. This algorithm is summarized in Eqs. 

(2-5): 

                                    ThresholdPnyxpyxptnt ttttnttnttnt ;),(min),(    

(2)
 

Predicted location: ),(),(),( tttttnttnt yxnyxyx   

(3)
 

Predicted displacement from t to t +1:    

),...},(),,(),,{(),( 221 tttttttttttt yxyxyxfyx   

(4)
 

Predicted rainfall trend:  ),...},(),,(),,({ 22212 ttttttttttttt yxpyxpyxpfP   

                                                   (5) 

 in which pt+nΔt (xt+nΔt, yt+nΔt) (intensity/time) is the predicted rainfall rate for the pixel 

located on (xt+nΔt, yt+nΔt) in time t+nΔt (t: the current time; if n=1, t+Δt: one time-step 

prediction, each time step = time interval between two consecutive radar imageries), and 

pt (xt, yt) is the precipitation rate at time step t corresponding to the location (xt, yt). The 

pixel-based tracking algorithm finds the corresponding location of each rainy pixel in the 

previous time steps with time interval ∆t; for example, pt-Δt (xt-Δt , yt-Δt) at time t-Δt is the 

Predicted rain rate at 



12 

 

pixel that corresponds to pt (xt,yt) at time t. The functions f1 and f2 represent a dynamical 

Lagrangian process in which the reference frame moves with each pixel. The function f1 

is used to estimate each pixel advection. n is the prediction step. The PBN algorithm 

provides predictions every 10 min up to 180 min (n = 1, 2, ..., 18).  

The advection-based displacement Δ(xt,yt) is a function of each specific pixel location 

in previous time step(s). The PBN assumes that the rate of rainfall pt+Δt (xt+Δt, yt+Δt) is a 

function of the current and previous time steps(s). Similarly, the function f2 is used to 

estimate Δp based on previous time steps. The Δp is the rainfall trend for each specific 

rainy pixel. In growing convective storms, Δp can be a significant positive quantity. In 

order to avoid unreasonable values, a threshold is set to limit the maximum values each 

rainy pixel might be assigned to. 

According to Eqs. (6-8) and Figure 2, f1  and f2 are used to predict storm advection and 

intensity, respectively. 
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The Vt-1 vector corresponds to advection for one specific pixel pt-2Δt (xt-2Δt , yt-2Δt) at 

time t-2Δt moved to pt-Δt (xt-Δt , yt-Δt) at time t-Δt. The Vt represents the advection field 
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between time t-Δt and t. As soon as the advection vectors for the three time steps are 

known, a function f1, which can be a linear combination of both Vt-1 and Vt, has been 

applied. Δt is the time interval between two consecutive time steps. PBN uses an average 

of two advection vectors (VP) as a reasonable estimation for storm extrapolation in a 

Lagrangian reference frame (Figure 2).  

The current time step t and the previous time step t-Δt could provide the advection 

field of each pixel. Nevertheless, PBN applies three time steps: t, t-Δt, and t-2Δt. Three 

previous successive time steps provide two advection fields, including Vt-Δt and Vt,, which 

are able to capture both the direct and rotational movement of each storm. 

The PBN algorithm applies both the advection field (VP) and the storm evolution 

(rainfall-intensity changes). In Eqs. (6-8), the function f2 uses three previous time steps, t, 

t-Δt, and t-2Δt, to extract Δp. Function f2 is used to predict the rate of rainfall pt+Δt (xt+Δt, 

yt+Δt) for time t+Δt at each rainy pixel based on the rainfall rate of that pixel in the last 

three time steps. The f2 is a function of the rainfall-rate variation for a pixel located at pt-1 

(xt-Δt, yt-Δt) time t-Δt moved to pt (xt, yt) at time t and the variation between time t-Δt and t-

2Δt. For each pixel, the average of these two trends has been used for intensity prediction 

at t+Δt. The same trend can be applied for time steps t+2Δt, t+3Δt, etc., until the rainfall 

rate reaches some predefined maximum threshold. If the trend is negative, there will be 

also a minimum threshold that is equal to zero rainfall. 

Using Δp and Vp, the PBN algorithm projects the storm’s length of prediction up to 3 

hrs (180 min). The PBN algorithm updates predictions every 10 min. According to Eqs. 

(6-8), similar advection velocity (Vp) and the intensity-changes trend (Δp) for the first 
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time step (t+nΔt; n=1) will be applied for the next time steps (t+nΔt), where (n=2, 3,..., 

18). 

Given the fact that the proposed PBN is a Lagrangian dynamic model, each pixel 

should be extrapolated in a Lagrangian reference system. The Vp, the average of Vt-Δt and 

Vt, is the advection vector for a specified pixel between t-2∆t, t-∆t, and t-∆t, t, 

respectively (Figure 2). To reduce the projection noise and fill probable discontinuities, a 

low-pass spatial filter (3  3) is applied. Each rainy pixel will be considered as a center of 

a 3  3 window of pixels, and the advection field for the window (VT) will be an average 

of the advection fields Vp for pixels inside the window. A larger filter could not be 

applied effectively for the prediction of small-scale storms. 

For every event, there is a moving window traveling with each specific storm 

throughout the storm lifecycle. The dynamic window moves with the storm in such a way 

that it is always concentrated on that storm. Because this is an event-based study to 

evaluate the PBN algorithm, using a dynamic window creates less error. The pixel-based 

algorithm is updated every 10 min as new radar imagery exists using three consecutive 

time steps (t = current time) and (t-Δt, t-2Δt = previous time steps). 

 The pixel-based tracking algorithm possesses a template-matching characteristic that 

operates based on the maximum correlation between meshes in two consecutive images. 

As opposed to the other tracking techniques, the PBN algorithm does not require any 

nonlinear programming, which is computationally time consuming and erroneous. Two 

consecutive images should have a suitable time interval to correctly retrieve the rainfall-

advection field. The current study shows that ∆t = 10 min is reasonable for retrieving the 

advection field. The PBN algorithm tracks the storm behavior during the past 20 (= 2∆t) 



15 

 

min, the historical knowledge of each particular storm will be used to extrapolate storms 

(Grecu and Krajewski, 2000). 

The proposed algorithm for storm tracking and nowcasting is discussed below. 

 

2.2 Pixel-based storm tracking: 

There have been some efforts to combine mesh-based and hierarchical techniques in 

order to enable better tracking of small-scale complex features, such as scaling, rotation, 

and shear (Toklu et al., 1996; Bergen et al., 1992). This paper applies a version of a 

newly developed pixel-based advection algorithm to identify the corresponding location 

of each rainy pixel in the previous subsequent image(s) (Bellerby 2006). The tracking 

algorithm operates at multiple spatial resolutions, initially estimating advection vectors at 

a very coarse resolution and then spatially refining the field down to a pixel level. It is 

thus designed to generate a spatially continuous and smooth vector field that does not 

suffer from discontinuities at template boundaries. Moreover, the tracking algorithm is 

robust with respect to sparse precipitation fields, and the initial tracking phase matches 

large templates and can robustly estimate the movement of a sparse field. The finer-scale 

stages of the tracking scheme are limited to rainy areas and constrained by the initial 

phase in a manner that prevents false matches. 

In fact, the multiscale nature of the tracking algorithm could make it relatively robust 

with respect to the skewness problem and matching high precipitation values that has a 

disproportionate effect on the overall pattern match. However, to minimize the tracking 

algorithm probable sensitivity to the data structure, the PBN algorithm applies, smoother 

log transformed data field. The current study uses log(R); in which R is the rain rate. 
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Then, the applied algorithm uses coarse-resolution quadrilateral meshes fully draped 

over the first image (time = t-Δt) called the Baseline image, and the subsequent one is 

called the Reference image (time = t). A rectangular-window, translational, correlation-

matching procedure then deforms the rectangular mesh covering the preceding image into 

a convex quadrilateral mesh, optimizing the correspondence between the two images at 

and around equivalent mesh nodes. The meshes over both images are interpolated to 

twice their previous spatial resolution, and the correlation-matching procedure is 

repeated, this time taking into account local distortions represented by the non-

rectangular mesh.  Incorporating these local distortions enables the tracking algorithm to 

accommodate rotational and shear effects, in addition to translations. The interpolation 

and matching stages iterate until the mesh resolutions reach the original image (Q2 radar 

data) resolution. Later iterations of the algorithm interpolate both images to four times 

their original spatial resolution using bi-cubic splines before starting the correlation-

matching procedure. At the end of the final iteration, each rainy pixel location (xt,yt) in 

the main image is associated with an equivalent location (xt-Δt,yt-Δt) in the same storm in 

the preceding image. Additionally, the algorithm is capable of deriving the reverse 

mapping, relating each pixel in the preceding image to an equivalent location in the 

current image from the same pair of final meshes without re-running the tracking 

procedure (Bellerby, 2006). The 2-D rainfall-advection algorithm is computationally 

efficient and has shown to be both robust in the presence of image rotation and shear 

(Zahraei et al., 2012a, 2012b). Figure 3 illustrates the key stages of the procedure for an 

arbitrary iteration (Bellerby, 2006), including: 
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(1) A correlation-based, template-matching algorithm is used to relate the closest 

point of each Reference mesh to the center point of each Baseline image mesh.  

(2) The Reference and Baseline meshes are replaced based on central and closest 

match points identified in Step 1.  

(3) Adjacent nodes in the new Reference mesh are checked for consistency. Nodes 

which are inconsistent are replaced by alternative cross-correlation matches. 

(4) Concave quadrilateral meshes/elements in the Reference mesh will be removed. 

 The current study applies the extracted rainfall advection fields to predict storm 

advection and intensity. 

Figure 4 illustrates the application of the pixel-based tracking algorithm to track a 

severe storm in three consecutive radar images. Figures 4.d and 4.e show that the tracking 

algorithm could successfully track the storm advection in the pixel scale. 

 

 

3. Data and Case Studies 

The next step involves the application and testing (verification) of the proposed PBN 

algorithm presented above. For this purpose, radar observations are used. Radar images 

have been used frequently in detecting severe storms. For this study, the Q2 radar-based 

quantitative precipitation estimation data set with 0.01o spatial and 2.5-5-min temporal 

resolution over the entire conterminous U.S. (CONUS) produced by the NOAA-NSSL is 

used (Vasiloff et al., 2007). This study focuses on the application of the radar-based 

rainfall products Q2 in nowcasting. The driving hypothesis is that the selected Q2 is an 

improved radar data set which has significantly filtered the effect of contaminants, such 
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as insects, anomalous propagation, and ground clutter (Lakshmanan et al., 2007). This 

study applies a resolution of 1 km for each 10 min and evaluates the use of the proposed 

PBN algorithm to predict precipitation in storm-scale or mesoscale atmospheric 

phenomena. Ten relatively severe storm events within the CONUS area are selected 

based on the reported severe winds, flash floods, or tornados that they have produced 

(National Climatic Data Center; ncdc.noaa.gov). Table 1 shows the studied events. The 

aforementioned events occurred during 2009 or 2010, with lifecycles not exceeding more 

than 25-30 hrs. All of the events caused major property damage and/or human fatalities 

(National Climatic Data Center; ncdc.noaa.gov). Relatively speaking, the storm events 

are small-scale, fast-moving thunderstorms with typically complicated structures. 

Although there has been a comprehensive study on all events, four storms will be 

examined more closely (Figure 5) due to some specific features. The first storm (shown 

in Figure 5a) is a small-scale, fast-moving thunderstorm. Its complex structure makes it 

difficult to segment and track by using current techniques. The second storm shown 

(Figure 5b), which starts with a localized convective structure, has broken into several 

smaller parts that move, rotate, and disappear very fast in a few hours. The storm 

produces a significant amount of rainfall. The third event (Figure 5c) is a very unique 

storm in terms of its being nearly stationary and slow moving. This storm produced more 

than 250 mm of rainfall in approximately 6 hr over Oklahoma City, OK, resulting in flash 

flooding in the urbanized area. The fourth storm (Figure 5d) is a significant event that 

produced severe rainfall and caused flooding in the area. Despite its large-scale structure, 

the storm is generated from some smaller, very fast-moving storms. This storm moves 

hundreds of kilometers in a matter of several hours. 
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4. Verification and Results 

The proposed PBN approach is compared with two nowcasting algorithms that have 

been presented in the literature (Montanari et al., 2006). Both of these algorithms are 

based on Eq. (1) and are described below.  

 

4.1 Eulerian-Persistence Model (EPM): 

The Eulerian-Persistence Model (EPM) or a Persistency (PER) model assumes that 

the future rainfall field is equal to the last available scan in which all terms in Eq. (1) are 

eliminated, except: 
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The PER model is used as a benchmark to evaluate prediction skill. The PER model 

assumes that the storm movement is negligible and assigns the same forecasted rainfall 

intensity as the last available storm imagery. The PER model is considered to be a 

reasonable short-term prediction for stationary storms. 

 

4.2 Lagrangian-Persistence Model (LPM): 

Advection is a key element in storm movement and nowcasting (Austin and Bellon, 

1974). The Lagrangian persistence model considers the storm advection while ignoring 

the rainfall dynamic changes. The equation can be rewritten as:  
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It is documented that a uniform Ux and Vy over the whole study domain might be a 

reasonable approximation for larger-scale storms (Pegram and Clothier, 2001a,b; Seed, 

2003). The LPM model, called WCN in the current study, is used for comparison with the 

proposed PBN algorithm (Lakshmanan, 2009). All nowcasting algorithms, including 

WCN, proposed PBN, and PER, have been implemented to predict the rainfall rate in the 

next 3 hr.  

 

4.3 Verification procedure: 

  A quantitative assessment commonly referred to as model verification is required to 

assess the degree to which the prediction and observation match each other. The model 

verification techniques usually use a pair-wise comparison of prediction and observation 

values. Given the spatial nature of radar observations, verification methods capable of 

quantifying the model performance over a prescribed domain are needed.     

  There are two approaches available for spatial verification, namely pixel-based and 

object (feature)-based methods. The pixel-based methods utilize a point-to-point or pixel-

to-pixel comparison between prediction and observation, while the object-based methods 

typically model storms as separate objects. Because each of these verification methods 

has some limitations, this study uses both approaches. 

 

4.3.1 Pixel-to-pixel based verification methods: 

 Four performance measures are used for pixel-to-pixel verification of PBN. They 

include coefficient of Correlation (C), coefficient of Efficiency (E), Probability of 

Detection (POD), False-Alarm Ratio (FAR), and Odds ratio. They measure the agreement 
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between forecast (F) and observation (O) (Legates and McCabe, Jr., 1999). The 

coefficient of correlation C is defined as: 

                               
 



 











N

i

N

i
ii

N

i
ii

FFOO

FFOO
C

1 1

5.025.02

1

))(())((

))((

                                         (11)

 

 

where the bar represents the average values, and N is the number of pixels in the 

prediction domain (Legates and McCabe, Jr., 1999; Grecu and Krajewski, 2000). 

 The coefficient of efficiency E is defined as: 
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where P is the indicator of the persistency in which there is no prediction (last available 

imagery before prediction; e.g., time = t). E will be between 0-1, where a value of 1 is a 

perfect prediction. A larger E indicates a better agreement between observation and 

prediction. However, E will be zero in the event that the prediction has less skill than the 

persistency. This means that the observations are described better by the persistency 

algorithms rather than by forecasts (Legates and McCabe, Jr., 1999).  

 POD and FAR are defined as: 
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where nh represents the number of hits, nf  is the number of failures, and nfa represents the 

number of false alarms. Grecu and Krajewski (2000) stated that POD and FAR are better 

metrics for pattern matching. POD shows the ability of the nowcasting algorithm in 

prediction of rainy/non-rainy pixels, based upon predefined thresholds. FAR indicates 

places in which the storm is predicted while there is no storm. Hogan et al., (2009) also 

indicated that POD and FAR have limitations in characterizing forecasting skill. 

Stephenson et al., (2000) represents the Odds ratio as a complementary verification 

measure.  

  

                                              (15) 

where ncn is the number of correct negative. The Odds ratio has range between 0 to ∞, 

that the greater has the better skill (Stephenson et al., 2000). The current study uses the 

logarithm of the Odds ratio. 

In Table 2, the concepts of hit, false alarm, and failure are described.  

An important issue to point out is that pixel-to-pixel based measures are not always 

accurate in terms of their ability to capture the correspondence between forecasts and the 

verification fields at the pixel level. In other words, if a model forecast at the pixel level 

does not compare well with the available observation, it does not necessarily mean that 

the performance is poor. This is especially the case when the objective is to evaluate the 

predicted storm’s position, along with its severity/intensity (i.e., precipitation rate) in a 

dynamic mode when storms evolve and move very rapidly. For this reason, other 

verification measures capable of assessing the storms as evolving objects (as opposed to 

pixel-to-pixel) are required.   
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The scenario represented in Figure 6 is intended to demonstrate the complimentary 

role of both verification methods in the case of application of the PBN and WCN 

algorithms to predict a thunderstorm (event 1). This storm, as captured by radar 

observations (Q2), has a number of high-rainfall cores in which accurate prediction of 

their locations can be very challenging. As previously mentioned, WCN relies on the 

application of storm segmentation along with an object-based tracking algorithm that 

may overestimate or underestimate storm advection. Figure 6 compares the prediction 

capability of both PBN (Fig. 6 b.c) and WCN (Fig. 6 d.e) for 30 min and 5- and 20-

mm/hr rainfall thresholds. Comparing Figures 6b-e and also Table 3 shows that the PBN 

algorithm has predicted the storm more accurately, particularly for higher rates of rainfall 

(i.e., 20 mm/hr, in this case). To capture these subtle, yet important differences, it is 

necessary to apply measures capable of verifying the skill of the nowcasting algorithms 

in detecting how storms (treated as “objects”) correspond to observations. Following is a 

brief description of an object-based verification measure which is intended to overcome 

the shortcomings of the pixel-based verification measures for such situations as presented 

in Figure 6.  

 

4.3.2 Object-based verification method:  

  Several classes of object-based verification methods have been introduced (Ebert, 

2009; Wernli et al., 2009). In this study, we implement an object-based verification 

metric that illustrates how two predicted and observed storms are either close or 

overlapped with each other. To calculate the metric, it is necessary to set some thresholds 
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to segment the storms of various intensity levels; no filtering or image modification is 

needed (Davis et al., 2006; Zhu et al., 2011). 

The evaluation index is calculated by the weighted combination of two metrics 

between the observed object “A” and predicted object “B”, as follows (Zhu et al., 2011): 
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in which distOV and distDV are overlapped and observation-based distances, respectively; 

λ1, λ2 are weighting factors, which are set to 0.5 for λ1 and λ2. Figure 7 illustrates the 

metric definition. 
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where aij, bij  are binary variables related to each pixel of sets A and B; for example, aij is 

1 if the pixel ij is a member of A and 0 if not. The pixel ij is in the set A if it has a value 

greater than a specified threshold. The overlapping distance is the root mean square error 

based on a binary field. 

The distob is the average distance for every single pixel of observation to the predicted 

set A: 
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where moA is the shortest Euclidean distance between point oi of the observation pixel to 

object A. N(O) and N(A) are the number of pixels in both sets.  D is a number greater than 

the maximum possible distance. The upper bound will be applied when the observation or 
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the forecast field is empty. Following Eq. (19), the observation-based distance will be set 

as: 
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In the metric for verification between two objects, observation O and forecast A, one 

of the distDV drops away. The metric can be applied simply as (Zhu et al., 2011): 
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The unit of the distances is in pixel. It may be used in km based on each pixel 

dimension.  

 

4.3.3  Discussion of pixel-to-pixel comparisons: 

The comparisons of PBN vs. the WCN and PER models and observations for the four 

measures (C, E, POD, and FAR) are displayed in Figures 8-14. According to Figures 8, 9 

,and 10, PBN shows improved performance for shorter lead time, and for longer lead 

time (~ 120-150 min) WCN and PBN perform in average the same. Figures 8 and 9 

present the comparison results for C and E measures for the four highlighted events, 

respectively. As observed from Figures 8 and 9, PBN performance in the first 80-90 min 

is consistently better than WCN and is especially noticeable for storms #1 and #3.     

   Figure 10 shows both C and E averaged over all ten events listed in Table 1. 

Comparing with other algorithm results, a correlation coefficient threshold = 0.15 is set. 

The PBN algorithm shows better performance than WCN when compared against radar 

observation for the first 90 min. According to Germann et al., (2006) the scale 
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dependency is an important factor in nowcasting skill. Usually small-scale features in the 

precipitation field have short lifetime. Similarly, the current case studies are dominated 

with small-scale short lifetime features. This is one of the reasons that the forecasting 

skill relatively drops after a few minutes. 

Figure 11 presents the averaged correlation coefficients of all ten events for +30 and 

+60 min predictions vs. different spatial resolutions. The coarser resolution (2, 4, 8, 16, 

32 km) shows better prediction skill. However, the coarser resolutions might not be able 

to predict smaller-scale thunderstorms. 

The POD of the PBN and WCN algorithms for different rainfall thresholds of four 

selected events is given in Figure 12. As evident from this figure, in general, PBN is 

more skillful in the first 70-90 min; beyond 90-100 min, the skills of both algorithms are 

relatively the same.  

Figure 13 illustrates the accuracy of prediction in terms of FAR. In general, the same 

conclusion as in Figure 12 can be drawn about the performance of PBN when compared 

against WCN. Figures 12 and 13 demonstrate that the proposed PBN algorithm has 

promising results for severe storm events. Figure 14 illustrates POD and FAR for all ten 

storms averaged vs. lead time. Assuming a POD threshold of about 0.1 (10%) and rain-

intensity thresholds of 10, 20, and 40 mm/hr, PBN provides promising predictions in the 

first 180, 120, and 80 min, respectively. This is more or less consistent with previously 

mentioned metrics that the PBN algorithm is reliable for the first 1-2 hr. 

Figure 15 also shows the logarithms of Odds ratios for four events that indicate the 

PBN algorithm has promising performance in different rain-intensity thresholds (10, 20, 

and 40 mm/hr). 
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4.3.4 Discussion of object-based metric comparisons: 

The comparisons of PBN vs. the WCN and PER models and observations using the 

object-based verification metric method are displayed in Figures 16 and 17. As evident 

from the results, PBN shows better performance for the different cases. Figure 16 gives 

the normalized object-based verification metric vs. lead time for the four selected events 

and for all three algorithms. Results reveal that PBN maximizes predictability of storms 

as compared to PER and WCN in all cases, except storm #3 (Figure 16c), which is a 

quasi-stationary storm. It is also encouraging that the PBN algorithm outperforms other 

algorithms, particularly as the rainfall thresholds increase from 10 to 40 mm/hr. In higher 

rainfall rates (threshold = 20, or 40 mm/hr), there is a greater gap between PBN and 

WCN. The PBN is able to predict high-rainfall storms more accurately. 

Figure 17 displays the overall verification results using the object-based verification 

metric for the average of all ten thunderstorms. In order to generalize the findings with 

respect to the forecast capability of PBN as a function of storm intensity, two metric 

thresholds were chosen and tested. For relatively light-rainfall rates (up to 10 mm/hr) and 

values of the metric up to the threshold = 0.2, the PBN algorithm appears to give better 

performance in the first 60 min. In relatively heavier-rainfall rates (up to 40 mm/hr), the 

object-based verification metric values up to the threshold = 0.35 can be selected, which 

suggests that the forecast made by PBN is reliable up to 30 min. 

 

5. Summary and Conclusions 

In this manuscript, we introduce a new nowcasting algorithm named Pixel-Based 

Nowcasting (PBN) to improve the predictability of severe thunderstorms. The proposed 
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PBN algorithm is particularly suitable for very short-duration forecasts useful for 

hydrological modeling applications, such as flash-flood forecasting. In testing the PBN 

prediction capabilities, ten severe storms were selected for their features, including 

relatively short lifetime, smaller-scale, damaging winds, and rainfall. The performance of 

PBN was compared against two other models, namely the WCN and PER algorithms.   

Two verification methods, pixel-based and object-based, were employed to evaluate 

different aspects of each algorithm as compared to radar observations.  

The main conclusion from this research is that PBN shows superior performance over 

the other two models examined in this study. Following is a summary of the more 

specific conclusions:  

 The pixel-based verification parameters justify the applicability of the 

proposed PBN model in the first ~90 min for forecasts of thunderstorms.  

 The object-based verification metric shows that the PBN algorithm provides 

promising performance in nowcasting both light- and heavy-rainfall storms. 

Based on this study, PBN shows promising performance in nowcasting 

intense storms in the first 30 min. These events might be associated with 

catastrophic events (e.g., tornados), for which it is very important to 

accurately predict in the short term.  

 Given the object-based verification metric, the difference between PBN and 

comparisons algorithms in severe rainfall is more than lighter rainfall, which 

means that the algorithm may outperform other nowcasting techniques, 

particularly in more severe events. 
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Table Captions: 

 

Table 1: Information for ten storms/events, including time, length, and states damaged 

by the storm. The fifth column shows if the thunderstorms caused fatality damage, the 

sixth column shows if the damage exceeded more than 1 million dollars, and the last 

three columns show if the thunderstorms had severe winds, flash flooding, and/or 

tornados (source: National Climate Data Center). 

 

Table 2: The contingency table, F = Forecast, O = Observation, Tr is the predefined 

rainfall threshold. 

 

Table 3: PBN and WCN algorithms, POD and FAR, for the event shown in Fig 6, using 

two rainfall thresholds 5 [mm/hr] and 20 [mm/hr]. 
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Event 

Time 
[mm/dd/yy] 

Length 
[hr] 

 
States 

 
Death 

Damage
> 

1 M 

Severe 
Wind 

Flash 
Flood 

 
Tornado 

1 05/08/09 18 
KS, MO, 
KY, VA 

Yes Yes Yes Yes Yes 

2 06/[09-10]/09 18 KS, MO No No Yes Yes Yes 
3 06/[13-14]/10 24 OK, KS Yes Yes Yes Yes Yes 

4 06/[22-23]/10 21 
NE, SD, IA, 

WI 
No Yes Yes Yes Yes 

5 08/[13-14]/10 
12 
 

KS, MO, IL No No Yes Yes No 

6 09/[13-14]/10 25 
   NE, IO, KS, 
MO, OK, AR 

No No Yes Yes Yes 

7 06/[18-19]/09 27 
NE, IA, IL, IN, 

KY,NC, GA 
Yes Yes Yes Yes Yes 

8 07/[24-25]/09 24 
MN, IA, WI, 

IL, IN 
No Yes Yes Yes Yes 

9 08/08/09 18 
MN, WI, IL, 
IN, MI, IA 

Yes Yes Yes Yes Yes 

10 08/[25-26]/09 19 CO, KS, NE No No Yes Yes No 
 

 

  

 

               (Zahraei et al. 2012, Table 1) 
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Event Condition 

Success F > Tr and O > Tr 

False Alarm F > Tr and O <  Tr 

Failure  F <  Tr and O >  Tr 

Correct 

Negative 

           F <  Tr and O <  Tr 

 

 

 

 

 

 

 

 

 

 

 

 

(Zahraei et al. 2012, Table 2) 
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    Nowcasting 

Rain: [mm/hr] 
    POD     FAR     Nowcasting       POD      FAR 

PBN, 

Rain > 5 
     53      51 

PBN, 

Rain > 20 
41      62 

      WCN,  

      Rain > 5 
     44      61 

WCN,      

Rain > 20 
30      77 

 

 

 

 

 

 

 

 

 

 

 

 

(Zahraei et al. 2012, Table 3) 
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Figure Captions: 

Figure 1. Representation of the loss of information content in forecasts as a function of 

lead time. The solid line represents the theoretical limit of predictability, the dashed line 

indicates NWP models, and the dotted line represents nowcasting methods (Austin et al., 

1987). 

 

Figure 2. Proposed PBN algorithm, Vt-1: The specified darker pixel advection vector 

between t-2Δt and t-Δt; Vt: pixel advection vector between t-Δt and t; VP: predicted 

advection as a function of Vt-1 and Vt for the darker (central) pixel; VT: average predicted 

advection vectors of all VP for nine pixels (window 3  3) centered on the darker pixel 

9/ pT VV  

 

Figure 3. Representation of the mesh-based tracking algorithm. (a) Image template 

matching to locate the position in the reference image which most closely corresponds to 

the center of each baseline mesh. (b) Mesh replacement by meshes of baseline centers 

and corresponding optimal matching locations. (c) Mesh interpolation. (Bellerby, 2006, 

used with permission). 

 

Figure 4. Three consecutive radar images (Δt=10 minutes; Spatial resolution ~ 20 km): 

(a) 20100623-0540, (b) 20100623-0550, (c) 20100623-0600, (d) extracted advection field 

between (a) and (b), and (e) extracted advection field between (b) and (c), (Rainfall Unit 

= mm/hr). 

 

Figure 5. Four selected severe storms: (a) Event 1:20090508-1150 [UTC], (b) Event 2: 

20090609-1750 [UTC], (c) Event 3: 20100614-0550 [UTC], and (4) Event 4: 20100623-

0450 [UTC], along with the spatial domain in which the storms produced significant 

rainfall (Rainfall Unit = mm/hr). 
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Figure 6. (a) Event 1 on 8 May 2009, 10:00 AM [UTC] observation, Q2 1 [km]. (b, c) 

PBN +30 [min] prediction and 5 and 20 [mm/hr] thresholds. (d, e) WCN +30 [min] 

prediction with 5 and 20 [mm/hr] thresholds (Rainfall Unit = mm/hr). 

 

Figure 7. The solid oval represents observation and the dashed oval represents forecast.  

(a) Euclidean metric function between points and between one point and a bounded set; 

(b) dist DV = 0, dist OV ≠ 0;  (c, d) [dist DV (e) < dist DV (f)] and [dist OV (e) = dist OV 

(f) ≠ 0] (from Zhu et al., 2011).   

 

Figure 8. Correlation Coefficient (C) vs. lead time [min], in which the larger values 

represent better prediction: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4.Three 

models: PBN, WCN, and PER. 

 

Figure 9. Coefficient of Efficiency (E), -∞<E<1, vs. lead time [min], in which the larger 

values represent better prediction: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4. 

Three models: PBN, WCN, and PER. 

 

Figure 10. (a) Correlation Coefficient (C) average for ten storms vs. lead time [min]. (b) 

Coefficient of Efficiency (E) average for ten storms vs. lead time [min], both PBN and 

WCN algorithms, in which the larger values represent better prediction. Three models: 

PBN, WCN, and PER. 

 

Figure 11. The Correlation Coefficient (C) vs. different spatial resolution [km] for 

different lead times [min] using the PBN algorithm.  The coarser resolution has better 

prediction skill. 

 

Figure 12. Probability of Detection (POD) for both PBN and WCN for four events, 10, 

20, and 40 [mm/hr] thresholds: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4, in 

which the larger value represents better prediction. 
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Figure 13. False-Alarm Ratio (FAR), PBN, and WCN for four events, 10, 20, and 40 

[mm/hr] thresholds: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4, in which the 

smaller value predicts better. 

 

Figure 14. Average of ten storms, (a) Probability of Detection (POD) vs. lead time [min]; 

(b) False-Alarm Ratio (FAR) vs. lead time [min], for thresholds 10, 20, and 40 [mm/hr]. 

 

Figure 15. Logarithm of Odds ratio for both PBN and WCN for four events, 10, 20, and 

40 [mm/hr] thresholds: (a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4, in which 

the larger value represents better prediction. 

 

 

Figure 16. Metric vs. lead time for different rainfall thresholds: 10, 20, and 40 [mm/hr]: 

(a) Storm 1, (b) Storm 2, (c) Storm 3, and (d) Storm 4, in which the better prediction has 

a smaller error metric. 

 

Figure 17. Object-based metric verification for the average of all ten thunderstorms vs. 

lead time; 10, 20, and 40 [mm/hr] rainfall thresholds have been tested. In light rainfall 

(the 10 mm/hr), the difference between WCN and PBN is less than the difference in high 

rainfall (20, 40 mm/hr). The better prediction has a smaller error metric. 
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(Zahraei et al. 2012, Figure 1) 
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(Zahraei et al. 2012, Figure 2) 
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(Zahraei et al. 2012, Figure 3) 
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(Zahraei et al. 2012, Figure 4) 
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(Zahraei et al. 2012, Figure 5) 
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(Zahraei et al. 2012, Figure 6) 
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(Zahraei et al. 2012, Figure 7) 
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(Zahraei et al. 2012, Figure 8) 
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(Zahraei et al. 2012, Figure 9) 
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(Zahraei et al. 2012, Figure 10) 
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(Zahraei et al. 2012, Figure 11) 
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(Zahraei et al. 2012, Figure 12) 
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(Zahraei et al. 2012, Figure 14) 

 



58 

 

(a) (b) 

                                          (c)                                   (d) 

 

 

 

 

 

 

 

 

 

(Zahraei et al. 2012, Figure 15) 
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(Zahraei et al. 2012, Figure 16) 
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(Zahraei et al. 2012, Figure 17)  

 


